Czas e-biznesu

Wszystkie najświeższe informacje o Polsce z Czasu e Biznesu.

Prawdopodobnie po raz pierwszy wykryto tajemniczą eksplozję Kilonova Twilight

Prawdopodobnie po raz pierwszy wykryto tajemniczą eksplozję Kilonova Twilight

Rendering artysty ilustruje opad z „kilonowej”, potężnego zdarzenia, które ma miejsce, gdy dwie gwiazdy neutronowe łączą się. Źródło: Rentgen: NASA/CXC/Northwestern Univ./A. Hajela i wsp.; Ilustracja: NASA/CXC/M. Weiss

Dziwnej „eksplozji dźwięku” towarzyszyło wydarzenie bez precedensu.

  • Tajemnicze promienie rentgenowskie widoczne 3,5 roku po połączeniu dwóch gwiazd neutronowych
  • Astrofizycy uważają, że zorze lub materiały kilonowe wpadają w a[{” attribute=””>black hole might have caused the X-ray emission
  • Either scenario would be the first for the field
  • The kilonova afterglow was likely produced by a shock similar to a sonic boom, generated by expanding debris from the merger

For the first time, Northwestern University-led astronomers may have detected an afterglow from a kilonova.

A kilonova occurs when two neutron stars — some of the densest objects in the universe — merge to create a blast 1,000 times brighter than a classical nova. In this case, a narrow, off-axis jet of high-energy particles accompanied the merger event, dubbed GW170817. Three-and-a-half years after the merger, the jet faded away, revealing a new source of mysterious X-rays.

As the leading explanation for the new X-ray source, astrophysicists believe expanding debris from the merger generated a shock — similar to the sonic boom from a supersonic plane. This shock then heated surrounding materials, which generated X-ray emissions, known as a kilonova afterglow. An alternative explanation is materials falling toward a black hole — formed as a result of the neutron star merger — caused the X-rays.

Każdy scenariusz byłby pierwszym tego rodzaju w tej dziedzinie. Badanie zostało opublikowane 28 lutego 2022 r Astrofizyczne listy z dziennika.

„Weszliśmy tutaj na niezbadane terytorium, aby zbadać skutki łączenia się gwiazd neutronowych” – powiedział Abrajita Hajela z Northwestern, który kierował nowym badaniem. „Po raz pierwszy szukamy czegoś nowego i niezwykłego. Daje nam to możliwość zbadania i zrozumienia nowych procesów fizycznych, których wcześniej nie obserwowano.”

READ  Badania wykazały, że gleba księżycowa może przekształcać dwutlenek węgla w tlen i może wspierać życie w kosmosie

Hajela jest absolwentką Northwestern Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) oraz Wydziału Fizyki i Astronomii w Weinberg College of Arts and Sciences.

17 sierpnia 2017 r. GW170817 przeszedł do historii jako pierwsze połączenie gwiazd neutronowych wykryte przez obydwa[{” attribute=””>gravitational waves and electromagnetic radiation (or light). Since then, astronomers have been using telescopes around the world and in space to study the event across the electromagnetic spectrum.

We are looking at something new and extraordinary for the very first time.”
Aprajita Hajela, astrophysicist

Using NASA’s Chandra X-ray Observatory, astronomers observed X-ray emissions from a jet moving very close to the speed of light produced by the neutron star merger. Starting in early 2018, the jet’s X-ray emission steadily faded as the jet continued to slow and expand. Hajela and her team then noticed from March 2020 until the end of 2020, the decline in brightness stopped, and the X-ray emission was approximately constant in brightness.

This was a significant clue.

“The fact that the X-rays stopped fading quickly was our best evidence yet that something in addition to a jet is being detected in X-rays in this source,” said Raffaella Margutti, astrophysicist at the University of California at Berkeley and a senior author of the study. “A completely different source of X-rays appears to be needed to explain what we’re seeing.”

The researchers believe a kilonova afterglow or black hole are likely behind the X-rays. Neither scenario has ever before been observed.

“This would either be the first time we’ve seen a kilonova afterglow or the first time we’ve seen material falling onto a black hole after a neutron star merger,” said study co-author Joe Bright, also from the University of California at Berkeley. “Either outcome would be extremely exciting.”

READ  Sondy kosmiczne NASA Voyager na nowo zdefiniują, co to znaczy żyć wiecznie

To distinguish between the two explanations, astronomers will keep monitoring GW170817 in X-rays and radio waves. If it is a kilonova afterglow, the X-ray and radio emissions are expected to get brighter over the next few months or years. If the explanation involves matter falling onto a newly formed black hole, then the X-ray output should stay steady or decline rapidly, and no radio emission will be detected over time.

“Further study of GW170817 could have far-reaching implications,” said study co-author Kate Alexander, a CIERA postdoctoral fellow at Northwestern. “The detection of a kilonova afterglow would imply that the merger did not immediately produce a black hole. Alternatively, this object may offer astronomers a chance to study how matter falls onto a black hole a few years after its birth.”

The study, “Evidence for X-ray emission in excess to the jet afterglow decay 3.5 years after the binary neutron star merger GW170817: A new emission component,” was supported by NASA, the National Science Foundation, the U.S. Department of Energy and the Royal Astronomical Society.